Nonparametric fixed-interval smoothing with vector splines
نویسنده
چکیده
منابع مشابه
Improved inference in nonparametric regression using Lk-Smoothing splines
Smoothing splines are one of the most popular approaches to nonparametric regression. Wahba (J. Roy. Statist. Soc. Set. B 40 (1978) 364-372; 45 (1983) 133-150) showed that smoothing splines are also Bayes estimates and used the corresponding prior model to derive interval estimates for the regression function. Although the interval estimates work well on a global basis, they can have poor local...
متن کاملIMPROVED INFERENCE IN NONPARAMETRICREGRESSION USING Lk -
Smoothing splines are one of the most popular approaches to nonparametric regression. Wahba (1978,1983) showed that smoothing splines are also Bayes estimates and used the corresponding prior model to derive interval estimates for the regression function. Although the interval estimates work well on a global basis, they can have poor local properties. The source of this problem is the use of a ...
متن کاملNonparametric Regression Analysis of Longitudinal Data
Nonparametric approaches have recently emerged as a flexible way to model longitudinal data. This entry reviews some of the common nonparametric approaches to incorporate time and other covariate effects for longitudinally observed response data. Smoothing procedures are invoked to estimate the associated nonparametric functions, but the choice of smoothers can vary and is often subjective. Bot...
متن کاملAdaptive Piecewise Polynomial Estimation via Trend Filtering
We study trend filtering, a recently proposed tool of Kim et al. (2009) for nonparametric regression. The trend filtering estimate is defined as the minimizer of a penalized least squares criterion, in which the penalty term sums the absolute kth order discrete derivatives over the input points. Perhaps not surprisingly, trend filtering estimates appear to have the structure of kth degree splin...
متن کاملNonparametric Regression in the Presence of Measurement Error
In many regression applications the independent variable is measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different approaches to nonparametric regression. The first uses the SIMEX method and makes no assumption about the distribution of the unobserved error–prone predictor. For this approach we deriv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 39 شماره
صفحات -
تاریخ انتشار 1991